логика Льюиса Кэрролла, подвластная не всем.

Льюису Кэрроллу были очень интересны логические задачки.
Он с огромным удовольствием развлекал своих маленьких друзей различными головоломками.

Он с увлечением играл словами, выстраивал силлогизмы, придумывал сориты.
Для Кэрролла язык не был просто набором символов и слов. В языке он видел пластический материал для проверки своих открытий.

Его смелые эксперименты опередили появление семантики и семиотики. Он разработал оригинальный вариант математической логики.

Попробуйте разгадать его знаменитую задачу о часах:

Какие часы чаще показывают правильное время — те, которые не работают, или те, которые отстают на одну минуту?
Льюис Кэрролл считал наиболее точными те, которые стоят.
Часы, которые опаздывают на одну минуту в сутки, показывают точное время один раз в два года, а стоящие часы — два раза в сутки.

Другая его знаменитая загадка про обезьяну и груз (1893 год):

Через блок, который прикреплен к потолку, переброшен канат. На одном конце прикреплен груз, на другом повисла обезьяна. Вес груза и обезьяны одинаков. Что произойдет с грузом, когда обезьяна начнет взбираться вверх по канату?
Эта задачка стала предметом многочисленных споров и дискуссий. Авторитетное жюри даже включило ее в перечень 400 наилучших логических задач в мире в специальном выпуске математического журнала The American Mathematical Monthly (1957 год). Очень редко физические задачи, составленные любителями, пользуются таким успехом.

«Какой же правильный ответ?» — спросите вы. Загвоздка в том, что решения задачи в таком виде не существует: оно зависит от дополнительных условий и предположений, которые вводятся при решении.

Особого мастерства Кэрролл достиг в решении соритов — логических задач, которые представляют цепочку силлогизмов, в которых изъятый вывод одного силлогизма служит посылкой другого.

Справка: силлогизм — рассуждение, состоящее из двух посылок и одного заключения. Решение силлогизма — это поиск заключения. Классический пример силлогизма:
Посылка 1: все люди смертны.
Посылка 2: Сократ — человек.
Заключение: Сократ смертен.

Льюис Кэрролл экспериментировал и применял новые методы синтеза и анализа силлогизмов и соритов.

В своей книге «Логическая игра» он обучает читателя графическим способом из двух суждений выводить третье.

Кэрролл предпочитал «инверсную силлогистику», которая «Все у — это m» выворачивает наизнанку «Ни один m не есть y». Льюис так любил закручивать текст посылки, что понять смысл порой сложно.

Например, его задачка про устрицу:

«Ни одно ископаемое животное не может быть несчастно в любви.
Устрица может быть несчастна в любви».
Какое заключение из этого можно сделать?
«Устрица — не ископаемое животное».
Книга «Логическая игра» была опубликована в 1887 году. Кэрролл не был знаменит как логик, поэтому, чтобы привлечь внимание к книге, он подписал ее своим уже известным сказочным псевдонимом.

Автор пытался оживить школьную логику с помощью метода диаграмм. Его метод позволяет сводить умозаключения к передвижению фишек на специальной игровой доске. Гилберт Честертон, мыслитель и писатель конца XIX — начала XX веков, назвал этот метод «геометрией мысли будущего».

Льюис Кэрролл предвосхитил то, что наши современники называют интерактивными методами. В книге «Символическая логика» 1889 года правила вывода сформулированы через словесные правила-формулы, с помощью которых заключения не требуют диаграмм и выводятся сразу, а в «Истории с узелками» приводит большое количество остроумных задач на логику.



Даже в сказках об Алисе чувствуется его любовь к логическим рассуждениям.

В задачах Льюиса Кэрролла раскрывается талант писателя и ученого. Серьезные по сути задачи он излагал легко и с юмором. Кэрролл соблюдал дисциплину мышления: в каждой задаче он оговаривал универсум и четко формулировал содержание терминов.

Историки науки признали логические работы Кэрролла опережающими время, а практически каждый логик сегодня знаком с его наследием. Но даже знать работы Льюиса еще не означает понимать их до конца.

источник


Posts from This Journal by “алиса” Tag

Доработанная окончательная версия «Решения парадоксов»
ВЕТВЬ /противоречивых суждений/ развёртывается при не фиксировании момента смыслового изменения ВЕДОМОГО /понятия в рассматриваемом вопросе/ полагающегося при переходе из МАКСИМАЛЬНО ВОЗМОЖНОГО (МксВ-ого) к МИНИМАЛЬНО ВОЗМОЖНОМУ (МнмВ-ому) УРОВНЮ ЗАВИСИМОСТИ (УЗ-и) от смысла ВЕДУЩЕГО понятия полагающегося на переднем плане для рассмотрения - Вдщ1 - и, соответственно, из МнмВ-ого к МксВ-ому УЗ-и от смысла ВЕДУЩЕГО понятия оставшегося за кадром или же перешедшего на задний план – Вдщ2 /антонима Вдщ1/.


Смысл ВЕДОМОГО:
«Критянин» перешедшего из МксВ-ого УЗ-и от смысла Вдщ1 «лжецы» к
МксВ-ому УЗ-и от смысла Вдщ2 «не лжецы» стал антонимом прежнему;
«Я» … «ложь» к … «правда» …;


Есть также ВЕТВЬ мнимая, развёртывание которой не связана с «не фиксированием момента …», ибо смыслового изменения полагающего развёртывание ВЕТВИ здесь нет.

Смысл ВЕДОМОГО:
«Ахиллес» не перешедшего из МксВ-ого УЗ-и от смысла Вдщ1 «путь
пройденный черепахой» к МксВ-ому УЗ-и от смысла Вдщ2 «пути не
пройденной черепахой» не допускает обгона;
«Стрела» … «движущаяся» … «покоящаяся»
преподносится как смысл перешедшего к антониму;
«Мнение Платона о ложности последующего мнения Сократа» …
«ПОДТВЕРЖДЕНИЯ /Сократом этого мнения Платона/» … «не
ПОДТВЕРЖДЕНИЯ» ...;
«Времени затраченного» … «преодоления полпути» … «преодоление всего пути»
не допускает достижения конца намеченного пути;
«Буриданов осёл» … «НЕУМЕНИЕ /делать выбор между двумя одинаковыми
стогами сена/» … «УМЕНИЕ» обречёт животное на смерть от голода;
«Сюрпризная дата казни» … «определения надсмотрщика» … «оптимистического
размышления приговорённого» не отменяет его казни в следующей
неделе;
«Брадобрей» … «бреющих себя» … «не бреющих себя» не допускает небритого
вида для брадобрея.



«Куча», «Лысый», «Корабль Тесея», «Яйцо или курица» не полагают развёртываний в отношение к себе даже мнимых ВЕТВЕЙ.